Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioengineering (Basel) ; 10(1)2023 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-36671656

RESUMO

The underlying mechanisms of spinal cord injury (SCI)-induced chronic pain involve dysfunctional GABAergic signaling and enhanced NMDA signaling. Our previous studies showed that SCI hypersensitivity in rats can be attenuated by recombinant rat GABAergic cells releasing NMDA blocker serine-histogranin (SHG) and by intensive locomotor training (ILT). The current study combines these approaches and evaluates their analgesic effects on a model of SCI pain in rats. Cells were grafted into the spinal cord at 4 weeks post-SCI to target the chronic pain, and ILT was initiated 5 weeks post-SCI. The hypersensitivity was evaluated weekly, which was followed by histological and biochemical assays. Prolonged effects of the treatment were evaluated in subgroups of animals after we discontinued ILT. The results show attenuation of tactile, heat and cold hypersensitivity in all of the treated animals and reduced levels of proinflammatory cytokines IL1ß and TNFα in the spinal tissue and CSF. Animals with recombinant grafts and ILT showed the preservation of analgesic effects even during sedentary periods when the ILT was discontinued. Retraining helped to re-establish the effect of long-term training in all of the groups, with the greatest impact being in animals with recombinant grafts. These findings suggest that intermittent training in combination with cell therapy might be an efficient approach to manage chronic pain in SCI patients.

2.
J Neurotrauma ; 38(6): 789-802, 2021 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-33218293

RESUMO

Neuropathic pain often accompanies the functional deficits associated with spinal cord injury (SCI) and further reduces a patient's quality of life. Clinical and pre-clinical research is beginning to highlight the beneficial role that rehabilitative therapies such as locomotor training can have not only on functional recovery but also on chronic pain management. Our group has previously developed an intensive locomotor training (ILT) treadmill protocol on rats that reduced SCI neuropathic pain symptoms for at least 3 months. We have extended these findings in the current study to evaluate the ability of regular ILT regimen over a 2 year period post-SCI to maintain neuropathic pain reduction. To assess this, the rat clip compression SCI model (T7/8) was used and treadmill training was initiated starting 4 weeks after SCI and continuing through the duration of the study. Results showed continued suppression of SCI neuropathic pain responses (reduced mechanical, heat, and cold hypersensitivity throughout the entire time course of the study). In contrast, non-exercised rats showed consistent and sustained neuropathic pain responses during this period. In addition, prolonged survival and improved locomotor outcomes were observed in rats undergoing ILT as the study longevity progressed. Potential contributory mechanisms underlying beneficial effects of ILT include reduced inflammation and restoration of anti-nociceptive inhibitory processes as indicated by neurochemical assays in spinal tissue of remaining rats at 2 years post-SCI. The benefits of chronic ILT suggest that long-term physical exercise therapy can produce powerful and prolonged management of neuropathic pain, partly through sustained reduction of spinal pathological processes.


Assuntos
Teste de Esforço/métodos , Locomoção/fisiologia , Neuralgia/terapia , Manejo da Dor/métodos , Traumatismos da Medula Espinal/terapia , Animais , Doença Crônica , Masculino , Neuralgia/etiologia , Condicionamento Físico Animal/métodos , Condicionamento Físico Animal/fisiologia , Ratos , Ratos Sprague-Dawley , Traumatismos da Medula Espinal/complicações , Vértebras Torácicas/lesões , Fatores de Tempo
3.
J Neural Eng ; 17(2): 026035, 2020 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-32240985

RESUMO

OBJECTIVE: Neuroprosthetics hold tremendous promise to restore function through brain-computer interfaced devices. However, clinical applications of implantable microelectrodes remain limited given the challenges of maintaining neuronal signals for extended periods of time and with multiple biological mechanisms negatively affecting electrode performance. Acute and chronic inflammation, oxidative stress, and blood brain barrier disruption contribute to inconsistent electrode performance. We hypothesized that therapeutic hypothermia (TH) applied at the microelectrode insertion site will positively modulate both inflammatory and apoptotic pathways, promoting neuroprotection and improved performance in the long-term. APPROACH: A custom device and thermoelectric system were designed to deliver controlled TH locally to the cortical implant site at the time of microelectrode array insertion and immediately following surgery. The TH paradigm was derived from in vivo cortical temperature measurements and finite element modeling of temperature distribution profiles in the cortex. Male Sprague-Dawley rats were implanted with non-functional Utah microelectrodes arrays (UMEA) consisting of 4 × 4 grid of 1.5 mm long parylene-coated silicon shanks. In one group, TH was applied to the implant site for two hours following the UMEA implantation, while the other group was implanted under normothermic conditions without treatment. At 48 h, 72 h, 7 d and 14 d post-implantation, mRNA expression levels for genes associated with inflammation and apoptosis were compared between normothermic and hypothermia-treated groups. MAIN RESULTS: The custom system delivered controlled TH to the cortical implant site and the numerical models confirmed that the temperature decrease was confined locally. Furthermore, a one-time application of TH post UMEA insertion significantly reduced the acute inflammatory response with a reduction in the expression of inflammatory regulating cytokines and chemokines. SIGNIFICANCE: This work provides evidence that acutely applied hypothermia is effective in significantly reducing acute inflammation post intracortical electrode implantation.


Assuntos
Hipotermia Induzida , Inflamação , Animais , Eletrodos Implantados , Inflamação/prevenção & controle , Masculino , Microeletrodos , Ratos , Ratos Sprague-Dawley , Utah
4.
Exp Neurol ; 327: 113208, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31962127

RESUMO

Spinal cord injury (SCI) produces both locomotor deficits and sensory dysfunction that greatly reduce the overall quality of life. Mechanisms underlying chronic pain include increased neuro-inflammation and changes in spinal processing of sensory signals, with reduced inhibitory GABAergic signaling a likely key player. Our previous research demonstrated that spinal transplantation of GABAergic neural progenitor cells (NPCs) reduced neuropathic pain while intensive locomotor training (ILT) could reduce development of pain and partially reverse already established pain behaviors. Therefore, we evaluate the potential mutually beneficial anti-hypersensitivity effects of NPC transplants cells in combination with early or delayed ILT. NPC transplants were done at 4 weeks post-SCI. ILT, using a progressive ramping treadmill protocol, was initiated either 5 days post-SCI (early: pain prevention group) or at 5 weeks post-SCI (delayed: to reverse established pain) in male Sprague Dawley rats. Results showed that either ILT alone or NPCs alone could partially attenuate SCI neuropathic pain behaviors in both prevention and reversal paradigms. However, the combination of ILT with NPC transplants significantly enhanced neuropathic pain reduction on most of the outcome measures including tests for allodynia, hyperalgesia, and ongoing pain. Immunocytochemical and neurochemical analyses showed decreased pro-inflammatory markers and spinal pathology with individual treatments; these measures were further improved by the combination of either early or delayed ILT and GABAergic cellular transplantation. Lumbar dorsal horn GABAergic neuronal and process density were nearly restored to normal levels by the combination treatment. Together, these interventions may provide a less hostile and more supportive environment for promoting functional restoration in the spinal dorsal horn and attenuation of neuropathic pain following SCI. These findings suggest mutually beneficial effects of ILT and NPC transplants for reducing SCI neuropathic pain.


Assuntos
Neurônios GABAérgicos/transplante , Atividade Motora/fisiologia , Células-Tronco Neurais/transplante , Neuralgia/terapia , Condicionamento Físico Animal/fisiologia , Traumatismos da Medula Espinal/terapia , Medula Espinal/patologia , Animais , Transplante de Células , Modelos Animais de Doenças , Masculino , Neuralgia/etiologia , Neuralgia/patologia , Limiar da Dor/fisiologia , Ratos , Ratos Sprague-Dawley , Traumatismos da Medula Espinal/complicações , Traumatismos da Medula Espinal/patologia , Resultado do Tratamento
5.
J Spinal Cord Med ; 38(6): 792-804, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25329574

RESUMO

INTRODUCTION: In order to develop optimal treatments to promote recovery from complete spinal cord injury (SCI), we examined the combination of: (1) a cellular graft of neural and glial restricted precursor (NRP/GRP) cells, (2) passive exercise, and (3) chronic quipazine treatment on behavioral outcomes and compared them with the individual treatment elements. NRP/GRP cells were transplanted at the time of spinalization. METHODS: Daily passive exercise began 1 week after injury to give sufficient time for the animals to recover. Chronic quipazine administration began 2 weeks after spinalization to allow for sufficient receptor upregulation permitting the expression of its behavioral effects. Behavioral measures consisted of the Basso, Beattie, and Bresnahan (BBB) locomotor score and percent of weight-supported steps and hops on a treadmill. RESULTS: Rats displayed an increased response to quipazine (BBB ≥ 9) beginning at 8 weeks post-injury in all the animals that received the combination therapy. This increase in BBB score was persistent through the end of the study (12 weeks post-injury). CONCLUSION: Unlike the individual treatment groups which never achieved weight support, the combination therapy animals were able to perform uncoordinated weight-supported stepping without a body weight support system while on a moving treadmill (6.5 m per minute) and were capable of supporting their own weight in stance during open field locomotion testing. No regeneration of descending serotonergic projections into and through the lesion cavity was observed. Furthermore, these results are a testament to the capacity of the lumbar spinal cord, when properly stimulated, to sustain functioning locomotor circuitry following complete SCI.


Assuntos
Terapia por Exercício , Células-Tronco Neurais/transplante , Neuroglia/transplante , Quipazina/uso terapêutico , Traumatismos da Medula Espinal/terapia , Animais , Feminino , Células-Tronco Neurais/efeitos dos fármacos , Neuroglia/efeitos dos fármacos , Quipazina/farmacologia , Ratos , Ratos Sprague-Dawley , Traumatismos da Medula Espinal/tratamento farmacológico , Transplante de Células-Tronco , Caminhada
6.
J Neurotrauma ; 32(9): 622-32, 2015 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-25539034

RESUMO

Spinal cord injury (SCI) is often associated with both locomotor deficits and sensory dysfunction, including debilitating neuropathic pain. Unfortunately, current conventional pharmacological, physiological, or psychological treatments provide only marginal relief for more than two-thirds of patients, highlighting the need for improved treatment options. Locomotor training is often prescribed as an adjunct therapy for peripheral neuropathic pain but is rarely used to treat central neuropathic pain. The goal of this study was to evaluate the potential anti-nociceptive benefits of intensive locomotor training (ILT) on neuropathic pain consequent to traumatic SCI. Using a rodent SCI model for central neuropathic pain, ILT was initiated either 5 d after injury prior to development of neuropathic pain symptoms (the "prevention" group) or delayed until pain symptoms fully developed (∼3 weeks post-injury, the "reversal" group). The training protocol consisted of 5 d/week of a ramping protocol that started with 11 m/min for 5 min and increased in speed (+1 m/min/week) and time (1-4 minutes/week) to a maximum of two 20-min sessions/d at 15 m/min by the fourth week of training. ILT prevented and reversed the development of heat hyperalgesia and cold allodynia, as well as reversed developed tactile allodynia, suggesting analgesic benefits not seen with moderate levels of locomotor training. Further, the analgesic benefits of ILT persisted for several weeks once training had been stopped. The unique ability of an ILT protocol to produce robust and sustained anti-nociceptive effects, as assessed by three distinct outcome measures for below-level SCI neuropathic pain, suggests that this adjunct therapeutic approach has great promise in a comprehensive treatment strategy for SCI pain.


Assuntos
Terapia por Exercício , Hiperalgesia/prevenção & controle , Atividade Motora/fisiologia , Neuralgia/terapia , Compressão da Medula Espinal/complicações , Compressão da Medula Espinal/reabilitação , Animais , Comportamento Animal , Modelos Animais de Doenças , Hiperalgesia/diagnóstico , Hiperalgesia/etiologia , Masculino , Neuralgia/diagnóstico , Neuralgia/etiologia , Ratos , Ratos Sprague-Dawley , Vértebras Torácicas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...